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Figure 1. The user interface of our prototype system. (a) a heatmap view to show the rough shape of a network; (b) a sketching
exemplar view where users can specify a structure exemplar manually; (c) a node-link view to present the structure of the network; (d)
a suggestion gallery to visualize similar structures detected by a query engine; (e) an exploration history view to show exploration
history; and (f) the control panel to enable users to adjust parameters of querying structures.

Abstract— When analyzing a visualized network, users need to explore different sections of the network to gain insight. However,
effective exploration of large networks is often a challenge. While various tools are available for users to explore the global and local
features of a network, these tools usually require significant interaction activities, such as repetitive navigation actions to follow network
nodes and edges. In this paper, we propose a structure-based suggestive exploration approach to support effective exploration of large
networks by suggesting appropriate structures upon user request. Encoding nodes with vectorized representations by transforming
information of surrounding structures of nodes into a high dimensional space, our approach can identify similar structures within a large
network, enable user interaction with multiple similar structures simultaneously, and guide the exploration of unexplored structures. We
develop a web-based visual exploration system to incorporate this suggestive exploration approach and compare performances of our
approach under different vectorizing methods and networks. We also present the usability and effectiveness of our approach through a

controlled user study with two datasets.
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Network data has been widely used in many fields to describe relation-
ships among entities, such as social relationships between people in
sociology, interactions between proteins in biology, and transactions
between companies in finance [77]. However, the efficiency and accu-
racy of analyzing a network are greatly influenced by its size because
analysts often have little knowledge about where to start the analysis
and where to find interesting patterns. Visual exploration offers an
interactive means to sense the underlying network and gain insight in
an exploratory way [47,65,67,75].

Various techniques to support large network exploration have been
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developed [16,64,70]. They usually follow two general strategies. A
top-down strategy [8,33] provides an overview of network structures
and guides analysts to local details by filtering or querying. The bottom-
up strategy [50], on the other hand, shows local details upon the request
of analysts and supports network exploration by following nodes and
edges of interest. Under both strategies, analysts have to narrow down to
local regions frequently and investigate the details. It is also a common
practice for analysts to switch between different levels of details to
navigate the entire network, or traverse the network stepwise along
nodes or edges. Thus, automatic recommendation of appropriate views
or structures has been suggested as a more effective and user-friendly
approach for large network exploration [14,16,57].

In particular, exemplar-based structure suggestion can assist users to
analyze and compare multiple similar structures quickly in examining a
large network. Here, we define a structure, or a subgraph, of a network
as a relationship among a set of connected nodes and an exemplar as a
structure of interest, which is specified by users. A structure describes
a certain local network pattern. The main challenge for suggesting
structures by exemplars lies in the lack of computationally-efficient
methods to support real-time structure-based exploration in large net-
works. Existing methods that detect structures in networks, such as
subgraph matching [15] and motif discovery [28], require high com-
putational cost or constraints on networks, such as networks must be
labeled [17]. In this paper, we present a novel visual exploration
approach that suggests appropriate structures upon user-specified ex-
emplar. Our approach employs a representation-and-querying scheme:
prior to exemplar-based query among all structure candidates, a vec-
torized representation of each structure is pre-computed. We design
and implement a web-based system for the exploration of structures of
interest in a network. Starting from an exemplar, our system supports
interactive query, identification, comparison, and analysis of one or a
set of structures scattered in a network. In summary, the contributions
of this paper include:

* A novel structure querying algorithm that leverages a vectorized
representation for nodes in a network. This algorithm is essential
to interactive visual exploration of large networks;

¢ An efficient suggestive exploration scheme that supports visual
exploration of structures in large-scale networks; and

¢ A web-based exploration system to support efficient exploration
of large-scale networks.

2 RELATED WORK

Our research work concerns the development of a novel network-
representation approach to support interactive exploration of large
networks. Thus, we review research literature in the areas of network
representation and visually-guided large-network exploration.

2.1 Representations of Networks

The term of representation can refer to two different but related con-
cepts: visual representation and data representation.

Visual representations of networks can be classified into three major
categories: node-link diagram, matrix representation, and hybrid meth-
ods. The key issue in node-link diagram is the spatial out of nodes, and
numerous methods have been proposed [24,31,45,46]. Purchase et
al. [60] discussed the importance of keeping the mental map for users to
understand the evolution of networks. Force-directed layout algorithms
are most widely used. Algorithms like FM3 [30] and ForceAtlas2 [36]
can process the layout of large networks with fast speed. Matrix rep-
resentation uses an adjacency matrix to visualize a graph, and usually
each non-diagonal matrix cell represents an edge. Ordering rows and
columns appropriately can effectively reveal typical netwrok patterns
such as clusters [51]. Ghoniem et al. [23] compared node-link diagram
and matrix representation, and concluded that node-link diagrams are
more intuitive and more suitable for path-based tasks, while matrix
representations are more compatible with dense graphs. However, ma-
trix representation faces a space scalability issue. Hybrid methods,
such as NodeTrix [34], use matrix and node-link diagram to represent
different components in a network (e.g., matrix for local communities

and node-link for connections among communities). In this paper, we
adopt node-link diagram to enable interactively specifying structures.

Data representation of a network concerns ways to describe nodes
and edges of a network mathematically. Recently, vectorized rep-
resentation, an approach to embed nodes or structures into a high-
dimensional space, has been popular in data mining [27]. Various
structure-preserving approaches have been proposed. Feature-based
methods [6,57,69] can measure a set of features and formulate a vector
representation of a node. Van den Elzen et al. [69] flattened the adja-
cency matrix as a vector and attached derived attributes at the end of it
to construct the final representation. Pienta et al. [56] aggregated the
node attributes and topological information of the neighborhoods of a
structure into a vectorized signature. The graphlet kernel method [63]
vectorized a graph by counting the frequencies of graphlets, which are
small, induced, and non-isomorphic subgraph patterns [59]. Kwon
at al. [40] used graphlet kernels to calculate similarities among large
graphs. In addition, some learning-based methods [52,54] have been
developed by machine-learning researchers. Such algorithms as N-
ode2Vec [29], Struc2Vec [61], and GraphWave [18] use representation
learning to vectorize a node or structure.

2.2 Visual Exploration of Large Networks

Visual exploration techniques are widely used in large network analysis
and network sensemaking [48, 55,74]. These techniques usually follow
one of the two major strategies: top-down exploration or bottom-up
exploration.

Providing an overview of the entire network is an intuitive way to
help users explore the data [8,33,76]. However, the escalating size
of networks increases the computational cost to generate an overview
of large networks, as well as the cognitive burden of users to explore
the networks. At the data level, methods such as clustering [3, 66],
sampling [43], and filtering [37] have been used to reduce the number
of objects in an overview. At the visualization level, techniques like
edge bundling can help to reduce view cluttering [35, 80]. Interaction
tools, such as expansion [41,70] and zooming [20, 68], are usually
combined with these methods. However, users still have to perform
many interaction activities to explore very large networks and may not
always know where exploration should start in an overview due to the
lack of necessary details about network structures.

Bottom-up techniques provide another way to explore a large net-
work. Under this approach, users often start from a single node or a
small structure of the network, and explore other nodes connected or
relevant to the shown nodes. Some techniques in this category, such
as Link Sliding and Bring & Go [50], are purely based on network
topology, and support topology-based exploration. Some designs sup-
ported the exploration of large networks in focus+context visualization
with degree-of-interest (DOI) functions [2, 10,22, 25, 38]. For example,
Van Ham et al. [70] used a DOI function to extract a maximal interest
subgraph around a searched node and enable users to expand the sub-
graph in any direction. Recently, Srinivasan et al. [64] designed Orko,
a system to support network exploration with multimodal interactions.

For networks with nodes having properties, node similarity-based
methods can be used to support user navigations by identifying relevant
nodes automatically [14, 16,26,57]. Various visual analytics systems
support the exploration of large networks with query mechanism, such
as path analysis [12,39, 53], visual query and query results analysis [7,
13,56, 58]. Zhao et al. [78] showed a technique to support exploring
explicit and implicit relations in datasets. In addition to node similarity-
based methods, subgraph-based methods [9] have also been proposed to
support large-network exploration. A representative way is to support
users analyze graphs by motifs [19,72,73], which are predefined graph
patterns. Von Landesberger et al [72] presented a system that supports
analysis of directed, weighted networks by filtering and aggregating
structures based on pre-defined or user-specified motifs. However,
finding motifs in a network is a time-consuming process and thus is
not ideal for supporting analysis of large networks (e.g., a network
with more than 10,000). Lenz et al. [42] proposed a visual analytics
system for exploration of motifs in directed acyclic networks, which is
not designed for free exploration in simple graphs. By measuring the



similarities among graphs, clustering of graphs [73] and finding relevant
graph in a set of graphs [71] can be achieved. Similarly, Behrisch et
al. [5] compared matrices with varying sizes by measuring the distances
among matrices in a low-dimensional space. However, these methods
are designed for exploring of a set of networks instead of a single large
network.

Yet, existing solutions typically require users to perform a large
amount of interactive activities in discovering interesting patterns or ex-
ploiting the entire structure. In this paper, we present a novel structure-
based suggestive exploration scheme to reduce the workload on free
navigation and frequent investigation of local structures.

3 OVERVIEW OF OUR APPROACH

In this paper, we focus on visual exploration of unlabeled simple net-
works, i.e., undirected unweighted networks without self-loops and
multiple edges. We address this challenge with a new representation-
and-querying scheme: prior to online network exploration, a vectorized
representation of the network structure is pre-computed. With this
representation, nodes are regularized into a multi-dimensional space.
This conversion actually facilitates effective analysis and comparison of
nodes, and consequently makes it amenable for structure-based query
and exploration. Different from previous subgraph matching algo-
rithms [15], which either require user-defined labels or have relative
high time complexity for unlabeled networks, our representation-and-
query scheme requires no label information, and is suitable for online
structure-based visual exploration of large-scale networks.

In this paper, we call a structure specified by users for query an
exemplar. Our approach is designed to support rapid exploration of
a large network by suggesting structures on exemplars. Users can
simultaneously explore, analyze, and compare multiple regions of a net-
work triggered by simple exemplar-specification interaction activities.
Meanwhile, this suggestion scheme facilitates the propagation of user
specifications on a node to other related nodes, effectively reducing the
workload in exploring multiple regions. With the detected structures,
users can be further guided to unexplored regions.

The basic workflow of structure-based suggestive exploration is
shown in Figure 2. The workflow can be summarized into three steps:
(1) specifying an exemplar through user interaction; (2) providing users
with suggested structures that are topologically similar to the exemplar;
users can explore and verify the suggested structures; and (3) modifying
or revising the suggested structures by iteratively exploring the network.
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Figure 2. Overview of our approach. Vectorized representations are first
calculated in a preprocessing step. The visual interface shows the net-
work topology in the heatmap view and the node-link view and vectorized
representations in the node embedding view. After an exemplar is given,
the query engine searches similar structures, which are further analyzed
and explored in the visual interface.

Following the above process, users can explore a large-scale network
efficiently iteratively. In such an exploration, multiple regions, which
are possibly far apart in the network, are shown simultaneously to users.
4 DETECTION OF STRUCTURES

Before a detailed description of the representation and query of struc-

tures, we define the terms in Table 1. An unlabeled simple network
can be denoted as G = (V,E), where V = {v,v;,...,v,} is a set of n
nodes, and E = {ey, e, ...,ex|e; = (Vin, V), Vi, vn € V' } is a set of edges
linking nodes in V.

Table 1. Definition of symbols

Symbol Description

N(v) Neighbors of node v

Egoi(v) | i-hop ego-network of v

gs A specified exemplar

kNN(gs) | The set of k nearest neighbors of nodes in gs
GiNN The subnetwork formed by nodes in kNN (g;.;)

A connected component in Gyyy
Py Clusters of nodes in g partitioned based on similarity
Clusters of nodes in C partitioned based on

Fe similarity and Py
Ds A cluster in P
pc A cluster in P
4.1 Vectorized Representation

The key idea of our approach is to generate a regularized representation
for each node (and its relevant local structure) and to enable vector-
based similarity measure and query. It is crucial for a representation to
provide the structure information of nodes (e.g., the structural similari-
ties among nodes). We choose five types of techniques from existing
representations, including GraphWave [18], Graphlet Kernel [49], N-
ode2Vec [29], Struc2Vec [61], and Feature-based method [6, 56, 69].
The impacts of different vectorized representations on the quality of
suggested exemplars is evaluated in Section 6.2.

4.2 Specifying Exemplars

We offer two modes for users to specify exemplars of their interests,
including selection and sketching. The selection mode enables user-
s to specify exemplars in the exploring network using lasso tool or
node-wise selection. The sketching mode allows users to sketch their
aiming structures in the sketching panel. While we have the vectorized
representation of the whole network, the vectorized representations of
selected exemplars can be directly obtained. However, in the sketching
mode, because the sketched exemplar is newly created, we need to
generate its vectorized representation online.

4.3 Querying Structures

After an exemplar is specified, similar structures are queried through a
four-step process: 1) constructing the set of candidate nodes in the vec-
tor space according to similarities among the vectorized representations
of nodes; 2) detecting connected components in the set of candidate
nodes according to the topology of the original network; 3) calculating
the correspondences among nodes in the specified exemplar and candi-
date; and 4) ordering the detected components based on their structural
similarities to the exemplar. Next, we describe these steps in detail.

Constructing the set of candidate nodes. We build the set of can-
didate nodes by selecting nodes that are similar to nodes in the exemplar.
Specifically, given a structure containing m nodes, we check k nearest
neighbors of each node and combine them as the candidate nodes set
N. Noting that the nearest neighbors of different nodes may overlap,
the size of N would be less than m x k. The k nearest neighbors of a
node is formed according to the similarity among the vectorized rep-
resentation of nodes. We compute the cosine distance with Graphlet
kernel, Node2Vec, and Struc2Vec methods, and obtain Euclidean dis-
tance with the feature-based and GraphWave methods. Generally, a
small similarity between a pair of nodes indicates that they have similar
local structures and vice versa.

Detecting structures Given k nearest neighbors of m nodes in an
exemplar, the size of the exact search space is . Fully traversing this
space to find similar structures faces two challenges. First, the time
complexity is too high to support interactive exploration. Second, it
only supports exact matching, i.e., the nodes of a structure must have a



one-to-one mapping to the exemplar. In reality, structures are seldom
exactly the same, so query must tolerate certain differences in structure.

Based on the above observations, we propose to detect connected
components in the subgraph (see Algorithm 1), which are composed
by the candidate nodes and their edges. The detected components are
considered as candidate target structures. The assumption here is that
a suggested structure must be a connected component in the original
network, and each node in it must be similar to a certain node in the
exemplar. It is possible that connected or overlapped structures are
detected as one component. Visually presenting composted structures
can help users understand the relationships among them. On the con-
trary, explicitly generating separated structures may yield redundant
structures and lead to heavy perception burden to users. Thus, we keep
the connected or overlapped structures unchanged.

Algorithm 1 Query Similar Structures
Input: G: the network; g;: the exemplar; €: the minimum similarity
between two nodes; k: value of k in kNN search; Sim: the ordered
similarity matrix
Output: C: detected connected components
: for all n; in gg do

1

2 County; =0

3 for all n; in Sim[n;],n; € G do
4: if Count,, > k then

5: Break

6 end if

7 if Sim[n,',nj} < €and n; gNexplored and n; ¢ g5 then
8: Count,,+ =1

9: Add nj into G,
10: Add n;j into Nexp]ored
11: end if

12: end for

13: Add n; into Nexplored

14: end for

15: C < connected_components(Ggip,);

Constructing correspondences. For a detected structure, the map-
ping from nodes in each connected component C to the exemplar g is
constructed in three steps. First, nodes in g are categorized into clus-
ters P based on the similarity in the vector space with DBSCAN [21].
We choose DBSCAN because it detects clusters without a pre-defined
cluster number. Next, nodes in each C are categorized into clusters Pc.
For a node in a specific C, it is assigned to the cluster to which its most
similar node in g, belongs. In this way, a cluster in P¢ also corresponds
to a cluster in Ps. Third, correspondences among nodes in a cluster p¢
in Pc and nodes in the corresponding cluster ps in Py are calculated.
Because nodes in two corresponding clusters are similar in the vector
space, we map every node in p¢ to a node in pg (see Algorithm 2).
Specifically, we select two most similar nodes in p¢ and pj, establish
the correspondence between them, and remove them from the node set
awaiting for being processed.

Algorithm 2 Find Correspondence among Nodes in Structures

Input: g: the exemplar; C: a detected connected component; Sim:
ordered similarity matrix; Ps: clusters of nodes in gg;
Output: Corr: the correspondence between nodes in g5 and C; Pc:
clusters of nodes in C
: for all nin C do
p  argmin(¥,-¢ - Sim[n,n*]), where p* € P
Append n into P¢[p]
end for
: for all p in P; do
Nj, Nk <— argminn,-&p,nkEPc [p] Sim[nh nk}
Corrlng] < n;
end for

I A ol e

Ordering and filtering detected structure. Detected structures are

ordered by structure similarity scores calculated with the Weisfeiler-
Lehman graph kernel [62]. Then, connected components that are most
similar to the exemplar are displayed. Filtering out those connected
components that are not similar to the exemplar can reduce the number
of components to be explored. In this paper, a connected component
is filtered out automatically if its size is too small (|C|/|gs| < 50%) or
it cannot be mapped to the exemplar properly (|Pc|/|Ps| < 50%) by
default. These two parameters are empirically set and can be adjusted
interactively by users.

5 VISUAL EXPLORATION

We develop a visual exploration system to support structure-based
suggestive exploration in large networks. Figure 1 shows the overall
user interface of the system (Figure 1). The system consists five major
views: 1) a node-link view to show the detailed structure of a large
network and allow users to identify interested structures; 2) a heatmap
view to present a heatmap with 2D kernel density estimation of network
layout in (1); 3) a sketch panel for exemplar sketching; 4) a suggestion
gallery to present suggested structures; and 5) an exploration history
tree to record the explored structures for later review.

5.1 The Node-link View

The node-link view (Figure 1(c)) is the major working space for network
exploration and exemplar specification. This view presents the detailed
structures of a large network in a pre-computed force-directed layout.
It has panning and zooming tools to support navigation. A lasso tool
for node selection is offered for the specification of exemplars.

5.2 The Heatmap View

To help users understand the rough shape of a network and locate
interesting structures, a KDE (kernel density estimation)-based heatmap
and its extracted contour lines are shown. The explored regions are
marked in blue and the unexplored are in grey. The heatmap view
provides a set of interactive tools, including zooming in/out, Region-
Of-Interest (ROI) selection and panning, and suggestion locating.

* Zooming To support free navigation at different level-of-details,

multi-level contour lines are extracted with different bandwidths.

* ROI selection and panning Users can select the ROI by draw-

ing a rectangle in the overview. Users can panning the ROI by
dragging it and exploring the details in the node-link view.

¢ Suggestion locating When an exemplar is specified, it and the

associated suggestions are encoded as glyphs in the heatmap view.
Users can locate the suggestions by clicking the glyphs.

Glyph design Glyph is used to indicate structure of interest. A
glyph should abstract the structure of suggestions and inform users the
similarity between a suggestion and the specified exemplar. Our glyph
design consists of two components (see Figure 3): an outer circle and
an inner node-link diagram. The outer circle is color-coded to specify
whether a structure is user-specified (in blue) or is system-suggested
(in orange). In the inner node-link diagram, each node represents a
cluster that is identified in the query step (see Algorithm 1). Two nodes
are connected if two corresponding clusters are connected by at least
one edge. The node-link diagram is generated with respect to the user-
specified exemplar. In the node-link diagram of a suggestion, a missing
node indicates that the corresponding cluster is not found. When users
hover on a glyph, missing nodes are shown as dashed circles. The tone
of a cluster node encodes the number of nodes in this cluster. The size
of glyphs scales along with zooming of the heatmap view. We also set
minimum and maximum size of glyphs to improve the scalability of
the heatmap view.

Design Alternatives. We also considered other three glyph design
alternatives in the design process (Figure 4). In the first design (Fig-
ure 4(a)), the total number of nodes is encoded by the color of an
inner circle and the radial line chart surrounding the circle encodes the
number of nodes in each cluster. However, users can hardly understand
the exact number of nodes in the radial line chart. The second design
(Figure 4(b)) removes the inner circle and employs a radial bar chart to
encode the node number of each cluster. Its color represents the number
of all nodes. This design is inefficient when the number of clusters is
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Figure 3. Glyph design used in the heatmap view and the exploration
history view. Nodes in a selected structure and a suggested structure
are categorized into clusters. The glyph consists of an outer circle and
an inner node-link diagram. The color of the circle shows the type of the
node. The node-link diagram encodes each cluster with a node, the color
of which indicates the size of the cluster.

large. Accordingly, the third design (Figure 4(c)) removes the axes that
correspond to clusters that are not found. It is not adopted because it
lacks intuitiveness and does not scale well with the number of clusters.
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Figure 4. Three design alternatives for the structure glyph. Each axis
represents a node in an exemplar with 8 nodes: (a) a design to encode
the size of suggested structure by the color of the inner circle and the
correspondence of nodes by a star glyph; (b) a design to encode size by
color and correspondence by bar length with a radial bar chart; and (c) a
design that revises (b) by removing nodes have no correspondence in
the suggested structure.

5.3 The Sketching Exemplar View

The sketching exemplar view (see in Figure 1b) supports a set of
interactive tasks related to an exemplar, including adding an exemplar
based on templates, adding nodes/edges in an exemplar, and deleting
nodes/edges. This view is designed for situations in which users have a
target in mind and want to sketch a desired exemplar. Basically, adding
nodes/edges of an exemplar allows users to start from scratch. The
templates, which are summarized by Bach et al. [4], provide suggestions
for novice users to begin their sketching. For experienced users, adding
an exemplar based on templates can be more efficient. The combination
of these interactive tasks offers a flexible and efficient way for exemplar
sketching. For instance, a precise exemplar can be created by first
selecting a template structure and then adding/deleting nodes and edges.

5.4 The Suggestion Gallery

The suggestion gallery juxtaposes the suggested structures in a descend-
ing order based on their similarities to the specified one. Users can
click the “Page Down” and “Page Up” buttons to explore the suggestion
galleries. The exemplar is always positioned at the left most of the
gallery for comparison. It is crucial to layout the presented structures
consistently for comparison. The layout is computed by considering
the correspondences among structures through 3 steps: (1) Laying out
the specified exemplar by using the force-directed layout algorithm. (2)
Setting the initial layout of each suggested structure. Each node in a
suggested structure is mapped to a node in the exemplar. The initial
position of a node is set to the position of its corresponding node in
the exemplar. (3) Adding perturbation into the initial layout to avoid
overlapping. When there are multiple nodes that map to one node in
the exemplar, visual clutter occurs. To avoid this problem, positions
of nodes are jittered by taking a few iterations with the force directed
layout algorithm. In our implementation, three iterations have been
proven to be effective.

Expanding structures consistently. We design a consistent struc-
ture expanding technique to support simultaneous exploration the sug-
gestions. Expanding the neighboring structures are useful for: 1) veri-
fying the similarity in a larger scale; and 2) exploring new structures.
A consistent expanding can help to build a consistent mental model
during the exploration. The main challenge is the consistency of the
layouts of the expanded neighbors. Our solution for this challenge
consists of three steps, as illustrated in Figure 5. First, we cluster the
expanded nodes in the vectorized space using DBSCAN. The number
of clusters is automatically decided by the clustering algorithm. Second,
when representing each cluster as a node, we layout the cluster nodes
by using the force-directed algorithm. Third, for each structure, we
layout its expanded nodes. We use positions of corresponding clus-
ter nodes as the initial positions, and perform three iterations with the
force-directed layout algorithm to jitter nodes in the same cluster. Users
can recursively expand a structure and merge adjacent expansions.

; i LY '
a ; D N
Expand | / \ // (I Nodes
" 1 ! A
/ 'Y /\] i A éV:A i Selected Nodes
. Explored Neighbors

N '
\ / - ‘3 O Unexplored Neighbors

Figure 5. Encodings of nodes in the suggestion gallery and layout after
node expansion. The layout of expanded nodes are firstly calculated by
force-directed layout algorithm and then placed on the right of explored
nodes. The color of the inner circle indicates if the node is selected. The
outer ring encodes the ratio of explored neighbors (the grey part) and
unexplored neighbors (the green part).

To denote where potential neighbors are for exploration, we design
a glyph (see Figure 5). The glyph consists of an inner circle and
an outer ring. The color of the inner circle represents the status of
nodes, including previous nodes (grey), newly expanded nodes (blue),
or selected nodes (orange). The outer ring is divided into two halves:
the grey half represents the expanded neighbors and the green half
represents the remaining neighbors. The angle of a half encodes the
ratio of corresponding neighbors.

5.5 The Exploration History View

Once an exemplar is specified, the suggested structures are shown in
the exploration history view (Figure 6) with a forest structure. This
view provides an overview of suggested structures and helps users
interactively review exploration history at any time. When users click a
tree node, the corresponding suggestion history will be shown in the
suggestion gallery view.

Construction of the exploration history forest. There are two
types of nodes in the tree. The first type represents exemplars, called
exemplar nodes. The second type represents suggested structures,
called suggested nodes. Initially, the forest is empty. An exemplar node
is inserted as a root into the forest, once an exemplar is specified. The
suggested structures are appended to the exemplar node. If a new ex-
emplar is specified when users exploring around suggested exemplars,
a new exemplar node is appended as a child of the node being explored.
If a newly specified exemplar is irrelevant to any nodes in the forest, a
new root is generated. Eventually, a forest is dynamically generated.
Edges between nodes in the forest can be classified into two categories.
The first category represents the suggestion relation (Figure 6(a)), i.e.,
a suggested node is generated based on an exemplar node. The sec-
ond category represents the exploration relation (Figure 6(b)), i.e., an
exemplar node is interactively identified around another node.

Visual Design. The forest is visualized by a series of dendrograms
(Figure 6). The dendrograms are placed vertically along the y axis,
which represents time (see in Figure 6). Nodes are depicted with the
same glyph design used in the heatmap view. To distinguish two types
of edges in the forest, nodes that are connected by suggestion relations
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Figure 6. Visual design used in the exploration history view: (a) the
suggestion relation from an exemplar structure to a suggested struc-
ture; and (b) the exploration relation from a suggested structure to an
exemplar structure. The structures are encoded with the glyph described
in Section 5.2.

are arranged vertically, while nodes that are connected by exploration
relations are arranged horizontally, as shown in Figure 6.

5.6 The Control Panel

The control panel enables users to control the quality of suggested
exemplars (Figure 1(f)). Users can set four parameters, &, €, |C|/|gs/,
and |P¢|/|Ps|, before the suggestions are generated. By adjusting k and
€, users can change the search scope of the query algorithm in the high
dimensional space. By adjusting |C|/|gs| and |P¢|/|Ps|, users can filter
out low quality suggestions. With |C|/|gs|, users can adjust the num-
ber of nodes in suggested exemplars, avoiding the size of exemplars
being too large or too small compared to the specified exemplar. With
|Pc|/|Ps|, users can adjust the correspondence between suggested exem-
plars and the specified exemplar, ensuring that suggested exemplars can
be properly mapped to the specified exemplar. To present the effect of
current combination of parameters, the number of suggested exemplars
is shown on the top of the system whenever users adjust parameters.

5.7 System Use Scenario

In this section, we illustrate how our system works with a real-world
network. The network used here is a Bitcoin trading network extracted
from the open data on [1]. The network is a subset of trading logs on
Jan 01, 2018, with 207689 nodes and 547500 edges.

Imagine a financial analyst who wants to gain some insight into
trading patterns of Bitcoin, but does not have any prior knowledge on
Bitcoin trading. He loads the network into our system and starts from
The heatmap view, which shows three regions with higher node densi-
ties than other regions. Therefore, he begins the exploration in these
regions. In the node-link view, he finds that a small number of nodes
has high degree centralities, i.e., some entities, people or organizations,
directly traded with a huge number of entities. Furthermore, five nodes
are connected through a significant number of intermediary nodes (Fig-
ure 7). Based on his experience, he suspects that these trading activities
may be related to money laundering, so he decides to explore whether
there are similar patterns in other regions with lower density.

Subsequently, he examines the border of the layout by brushing
in the heatmap view and finds a structure (Figure 8(a)) similar to the
previously seen structure and with a reasonable number of nodes for
manipulation. He selects this structure as an exemplar and then gets the
suggested structures by the system (see Figure 8(b)). These structures
appear in other regions and indicate similar trading patterns (Figure 9).
Studying a structure glyph in the heatmap view (see Figure 7), the
analyst identifies a node involved in several structures, implying repeat-
ed involvements of an entity in similar suspicious tradings. Thus, the
analyst files a report to suggest further investigation on the entity.

The analyst continues to investigate other trading patterns. He has
knowledge on social network analysis and knows that a star-shaped
structure indicates a node with a high local centrality in the structure,
which may be related to entities who are the centers of trading activ-
ities. Instead of searching for a star-shaped structure, he draws a star
exemplar in the sketching exemplar view, and as expected, the system
suggests a series of star structures in the suggestion gallery. By analyz-
ing node glyphs, he finds that some nodes in these structures have many

NODELNK VIEW | SUGGESTION GALLERY.
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Figure 7. Structure of one of the regions with the highest density in the
network. Five center nodes trade with a large amount of nodes, which
only trade with one or two other nodes. Meanwhile, the center nodes are
connected through a huge number of intermediate nodes.
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Figure 8. Structures identified based on an exemplar: (a) an exemplar is
found in a low density region, which is similar to the trading pattern in the
high density region; and (b) suggested structures in other regions are
shown after the exemplar is specified.

unexplored neighbors. To verify the centrality of those nodes identified
as the centers in a larger scale, he expands a node in a structure of the
gallery, and corresponding nodes in all other structures are simulta-
neously expanded. After several expansions, he finds an interesting
trading pattern: the centers of two star structures are connected. This
pattern appears in multiple structures (Figure 10(a)). By observing the
structure in the node-link view, he realizes that this trading pattern is a
frequent one in the Bitcoin trading network (Figure 10(b)). He is then
interested in structures with multiple centers in the trading network, so
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Figure 9. A suggested structure, which is very similar to the specified
exemplar.

sketches an exemplar as Figure 11a and the system suggests a series of
such structures (Figure 11(b)).
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Figure 10. (a) Connected star structures are found in multiple suggested
structures after several expansions; (b) connected star structures are
suggested after a connected star structure is specified as an exemplar.

5.8 System Implementation

We implemented a web-based system in browser-server architecture.
We adopted React, D3.js, and PixiJS to implement the front-end appli-
cation. PixiJS was used in the heatmap view, the node-link view, and
the suggestion gallery view; and D3.js was used in the heatmap view,
the sketching exemplar view, and the exploration history view. We used
Python 3.0 to implement the backend server. Scipy and Numpy were
used for data processing. MongoDB is used for data storage.

6 EXPERIMENTS

‘We conducted several experiments to evaluate the effectiveness of our
approach with different vectorized representations of nodes in different
large networks. The experiments were conducted on a PC with an Intel

Figure 11. (a) The exemplar sketched by the user that contains three
centers and a series of surrounding nodes; (b) a series of suggested
exemplars similar to the sketched exemplar.

17-4790 CPU (3.60GHz) and 16 Gigabyte RAM. The vectorized repre-
sentations we used include GraphWave, Graphlet Kernel, Struc2Vec,
Node2Vec, and the feature-based method. All vectorized represen-
tations of nodes were performed offline on a PC with an Intel Xeon
CPU E7540 (2.00 GHz) and 188 Gigabyte RAM. We implemented the
feature-based method and used open-source implementation of other
four methods to calculate the vectorized representations. For the Bit-
coin trading network with 207689 nodes and 547500 edges, Struc2Vec
takes longest time (for about 7 days) and other methods take similar
time to finish calculation (for several hours).

6.1

Our experiments used a set of synthetic networks and two kinds of real
networks: a twitter network and a set of Bitcoin trading networks.

* Synthetic networks consist of a series of typical structures, in-
cluding stars, cliques, bipartite cores, and king’s graph [11]. We
generate three networks, which contains 2122, 5581, and 10926
nodes and 20944, 78505, and 192631 edges, respectively. The
number of each type of structure is set to 10, 20, and 30 and the
number of nodes in structures is randomly set to [40,60], [60, 80],
and [80, 100], respectively. We conducted performance tests on
all three datasets.

¢ The Twitter network [44] consists of ‘circles’ from Twitter. It
contains 81306 nodes and 1342296 edges. This network is used
in the algorithm performance evaluation.

¢ Bitcoin trading networks used in the experiments were again
extracted from the open data on [1]. In addition to the network
we described in Section 5.7, three other networks were extracted
from the transaction data on Jan 01, 2018. These networks have
10276 nodes and 42024 edges, 104134 nodes and 75560 edges,
207689 nodes and 547500 edges, respectively.

Datasets

6.2 Performance

We evaluated our method in two aspects. First, we evaluated the quality
of suggested exemplars with different vectorized representations and
different ways of specifying exemplars. Based on the first evaluation,
we were able to choose the best vectorized representation. Then we
evaluated the search speed of our method with different network sizes
and different exemplar sizes based on the chosen representations and
two ways of specifying exemplars.

Due to the lack of ground truth, we evaluated the performances of
five vectorized representations introduced in Section 4.1 on a synthetic
network with 10926 nodes. We evaluated the performances using
recall, which is the ratio of found target structures to all the target
structures, and precision, the ratio of found target structures to all found
structures. We examined the performances of our approach on different
representations with different values of k and € based on the two ways
of specifying exemplars. Results are shown in Figure 12.

The recalls and precisions of the selection mode are shown by solid
lines in Figure 12. The query recalls increase with the increase of
k, while € is fixed at 0.05. When & is larger than 1600, GraphWave,
Graphlet kernel, Struc2Vec and feature-based methods all achieve a
precision larger than 0.8. When £ is fixed at 2500, recalls of Node2Vec
and Struc2Vec increase significantly with the increasing of €, while
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Figure 12. Recalls and precisions of our approach based on different vectorized representations when exemplars are specified by selections (solid
lines) and sketching (dashed lines). (a) recalls increase with the increasing of k; (b) precisions are stable with the increasing of k; (c) recalls of
GraphWave, Graphlet Kernel, and Feature-based methods are stably high while recalls of Struc2Vec and Node2Vec increase with the increase of €
when exemplars are specified by selection; recalls of Graphlet Kernel is high while recalls of other methods are low when exemplars are specified
by sketching; (d) precisions of GraphWave, Graphlet Kernel, and feature-based method are stable while precisions of Struc2Vec and Node2Vec
increase with the increasing of e-neighbors in the selection mode. Precisions of Graphlet Kernel are high while others are low in the sketching mode.

the recalls of GraphWave, Graphlet Kernel, and feature-based methods
change slightly. In terms of precisions, GraphWave and Graphlet Kernel
outperform the other three approaches, and GraphWave is slightly better
than Graphlet Kernel.

The recalls and precisions of the sketching mode are shown by
dashed lines in Figure 12. When ¢ is fixed at 0.05, the recalls and
precisions of Graphlet Kernel and Graphwave increase with the in-
creasing of k. Graphlet Kernel achieves good recalls (> 0.6) when £ is
larger than 1500 and has a good precision (> 0.9). When & is fixed at
2500, recalls of Graphlet Kernel outperform than other representations.
When ¢ is small (< 0.05), Graphlet Kernel has high recalls (> 0.9) and
precisions (> 0.9). However, recalls of Graphlet Kernel decrease to
around 0.7 when € > 0.1. The precisions of Graphlet Kernel decrease
from around 1.0 to around 0.75 when € > 0.1. This is because when
€ is large, in some cases, detected candidates form a large connected
network, which is filtered out by our algorithm. In terms of recalls and
precisions, Graphlet kernel outperforms the other approaches.

The recalls and precisions show that our method can suggest appro-
priate exemplars with proper parameters and vectorized representations.
Also, We conclude that GraphWave works best in the selection mode,
and Graphlet kernels works best in the sketching mode. Thus, we used
GraphWave as the basic representation for experiments described later
when exemplars are specified by selection, and Graphlet kernels as the
basic representation for experiments described later when exemplars
are specified by sketching.

Because the suggestion generation procedures of the two modes of
specifying exemplars are different, we measured the query time based
on different specification methods separately, as shown in Figure 13.
The solid line shows the time to return suggested exemplars when
specify exemplars by selection. In general, the time to return query
results is lower than 1 second. For example, to query a network with
207689 nodes and 547500 edges, it takes less than 1 second to produce
query results, when the size of the exemplar is smaller than 50. When
the size of the exemplar is 100, the query time in a large network is
only about 1.2 seconds. The dashed line shows that the query time to
return suggested exemplars when exemplars are specified by sketching
is longer than selection, which is reasonable because more calculation
need to be done. To query a network with 207689 nodes and 547500
edges, the query time is less than 2 seconds, when the size of the
exemplar smaller than 50. When querying an exemplar with 100 nodes,
the query time is smaller than 3.5 second. In general, although the
query time of the sketching mode is longer than the selection mode, the
query results can be returned in less than 3.5 seconds.

Computational Complexity. The fast query speed can be explained
by the good computational complexity of our algorithm. The time com-
plexity of querying similar structures is O(m x |V|), where m is the
node size of the exemplar. The time complexity of finding correspon-
dence among nodes in structures is O(m X k), where k is the number
of candidate nodes, which is smaller than |V|. Thus, the total time
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Figure 13. The query time of our approach. (a) The exemplar size
is fixed to be 50. The average and max query time increase linearly
with the increase of the network size; (b) the network size is fixed to be
207689. The average query time increases linearly with the increase of
the exemplar size.

complexity of our method is O(m x |V|). Finding suggested structures
at the level of second is important to interactive exploration. This
low-delay feedback on the specification of exemplars allows users to
continue their exploration activities without the interruption of their
cognitive activities that is often caused by computational delay.

7 USER STUDY

We conducted a user study to compare our approach with manual
exploration. The study was a between-subject design. The manual
exploration treatment was constructed with our system by removing
the suggestive exploration functionality. Our hypothesis is that the
structure-based suggestive exploration scheme greatly improves explo-
ration efficiency.

Datasets. Two datasets were used in the user study: the synthetic
network with 10926 nodes, and the Bitcoin trading network with 10276
nodes. The Bitcoin trading network was used for the tutorial. The
synthetic network was used for the task because we had the ground
truth about the network and could accurately assess user performance.

Participants. We recruited 12 student participants (7 male, 5 fe-
male). They were all familiar with visualization techniques when
recruited. No participants had prior knowledge of the synthetic network
nor network exploration. Participants were randomly divided into two
groups. The experiment group had 4 males and 2 females, and the
control group had 3 males and 3 females.

Task. The task of participants was to find some structures inside the
synthetic network. We provided each participant a sheet, on which a
set of structures were presented. Some listed structures appeared in
the synthetic data but some do not. Subjects were asked to search for
structures similar to each structure on the sheet and also to count the
number of each structure they found.
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Figure 14. Recall and precision of our approach and the baseline system.
(a) Our approach has higher recalls than the baseline system; (b) the
precision of ours and the baseline are close.

Procedure and Apparatus. Each trail had three steps. In the first
step, a participant was given a 5-minute tutorial with the Bitcoin trading
network. The functions of the system they would use were introduced
and participants then explored the Bitcoin trading network freely to
get familiar with the system. In the second step, users were asked to
complete the task with the synthetic network and to record what they
found when they explored the network in the system . This step had a
fixed time length, 20 minutes, but a participant could stop exploration
before the time ran out if they thought they had completed the task. The
final step was an interview after the task was completed. In this step,
we asked participants for feedback about the system and the task. We
recorded the feedback of participants. We used the same PC described
in Section 6 for all trials.

Results. We compared the recall and precision between two groups.
As Figure 14 shows, both approaches lead to high precision: 0.98 for
both treatments and no significant difference found (p=.45). However,
there is a significant difference in recall between two treatments, 0.56
for our system vs. 0.32 for the baseline (p < .001).

Our interview data showed participants were more positive about our
system than the baseline. Participants with the baseline system com-
plained tasks were tediousness and time-consuming. In comparison,
participants using our system indicated that the exemplar-based sugges-
tion provides an efficient query interface and speeds up the exploration
process dramatically. A participant told us the sketching exemplar view
was very helpful because he could directly draw a specific structure for
suggestions when he could not find the structures on the answer sheet.

Some participants expressed concerns with our system, however. A
participant said that he did not trust the suggestions generated by the
system and had to confirm the suggested structure one by one in the
node-link diagram. Examining his logs, we found that his performance
was still impressive, with a recall higher than most participants in the
baseline group. Two participants told us that the two parameters k and
e-neighbors were hard to understand, but they could still find structures
with the help of our system because it showed the number of suggested
structures every time when they adjusted the parameters.

8 DISCUSSIONS

Value. Our system can be used as the first step towards exploring
a large graph with an exemplar paradigm. Our design maintains a
balance between flexibility and compatibility in specifying exemplars.
Currently, our system provides two modes to define exemplars. These
modes are compatible with existing techniques in graph definition and
interaction design. For example, specifying exemplars is compatible
with the vectorization framework. Meanwhile, providing structure
templates follows a design principle in interaction design: recognizing
an object is easier than recalling it.

Quality of suggestions. Our method can provide high-quality sug-
gestions. The quality of suggested exemplars depends on the vectorized
representations: GraphWave outperforms other representations in the
selection mode and Graphlet Kernel performs better than others in the
sketching mode. We believe that the quality of suggestion can be further
improved by designing vectorized representations that are more suitable
for structure-based exploration. Moreover, we provide two mechanisms
to improve the quality of suggested exemplars. First,users are enabled
to filter out low-quality exemplars by manually adjusting parameters in

the control panel. Second, high-quality suggestions are shown to users
by sorting suggestions with their similarities to the specified exemplar.
Experimental results also show that the ways of specifying exemplars
affect the quality of suggestion because the proper value of parameters
varies in different modes.

Advantages. Our approach offers three advantages over traditional
graph query methods that are designed for graph database [32,79].
First, our method can be applied more broadly than graph queries.
Database-based graph query methods are usually designed for graphs
with attributes. Our approach only requires topological information
of a graph, and works well on unlabeled graphs. Second, our method
can tolerate minor differences in structures and provide inclusive query
results. Database-based query methods typically require an explicit
expression of structures and may produce redundant query results.
Third, our approach can be used by more diverse user groups. To use
database-based query methods, users need to be skilled at formulating
explicit query expressions of the target and relationship between nodes.
In contrast, our approach allows users to specify or choose an exemplar,
even without a clear goal in exploration or domain knowledge on
network analysis.

Scalability. Our approach has a reasonable scalability. As discussed
in Section 5.7, our algorithm performs excellently in terms of time
complexity. The average and max query times increase linearly with the
size of networks and exemplars. This suggests a direction to improve
graph query performances.

Limitations. The major limitation of our approach is the potential
loss of important contextual information in the query algorithm. The
vectorized representation of a node contains the information of its
neighbors in the vectorization methods. Therefore, the suggestion
results tend to have similar context with the exemplar. In most cases,
this is less a concern in exploration, but could lead to unexpected results
if an exemplar is sketched without well-defined context, in particular
when networks are very complex.

Future works. In the future, we first plan to improve the interaction-
s in specifying exemplars, such as enabling users to specify exemplars
with abstracted concepts. We plan to extend our method to other net-
work types, such as networks with contextual information or dynamic
networks. Currently, the vectorized representations in our method
are designed for simple networks. We believe that our approach can
be extended to support other more complex networks. The vectorized
representations can be modified to support the translation of the context
of nodes into other types to vectors. In addition to the user interface
can be improved to support other network types (e.g., for dynamic
networks, adding a timeline to indicate the evolution of networks and
support the sketching of time-varying exemplars).

9 CONCLUSION

In this paper, we propose a structure-based suggestive exploration
approach for large networks. Leveraging vectorized representations
of nodes in networks, we develope an exemplar-based structure query
algorithm to support graph query based on user-specified exemplar. Our
query engine suggests similar structures in a network and can greatly
help the exploration of large networks. We also build a visual interactive
system to support the suggestive exploration, and the results from our
experiments and usability study indicate that our system is easy to use
and capable to support efficient exploration of large networks. The
results of our research suggest that our approach could be effective for
graph query in general networks, as long as their topological structures
are clearly defined.
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